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MIXED WIDTH-INTEGRALS OF
CONVEX BODIES

BY
ERWIN LUTWAK

ABSTRACT

The mixed width-integrals are defined and shown to have properties similar to
those of the mixed volumes of Minkowski. An inequality is established for the
mixed width-integrals analogous to the Fenchel-Aleksandrov inequality for the
mixed volumes. An isoperimetric inequality (involving the mixed width-
integrals) is presented which generalizes an inequality recently obtained by
Chakerian and Heil. Strengthened versions of this general inequality are
obtained by introducing indexed mixed width-integrals. This leads to an
isoperimetric inequality similar to Busemann’s inequality involving concurrent
cross-sections of convex bodies.

In recent papers [4, 5] Chakerian proved that if K, - - -, K, are rotations of a
fixed convex body (compact convex set with non-empty interior) in Euclidean
n-space and bk, (u) is half the width of K; in the direction u, then

VKD - V(K,) = EL B (u) -+ - bx,,(u)dS(u)]"

with equality if and only if the K: are n-balls. In the inequality above, V(K;)
denotes the n-dimensional volume of K, ) denotes the surface of the unit
n-ball, and dS denotes the area element on (). For plane convex bodies, this
inequality was proven by Heil [9], generalizing a result of Radziszewski [14]
which was later rediscovered by Chernoff {6).

In this paper we show that the inequality established by Chakerian is a general
inequality which holds for arbitrary convex bodies K; (which need have no
relation to one another). By considering power-means, we obtain strengthened
versions of this general inequality. This, in turn, leads to an isoperimetric
inequality similar to an inequality of Busemann [3] involving concurrent
cross-sections of convex bodies.

The setting for this paper is Euclidean n-dimensional space, R". We shall use
X" to denote the space of convex bodies, endowed with the Hausdorff topology.
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The letter K (with subscripts) will be used to denote convex bodies, exclusively.
The volume of the unit n-ball, U, will be denoted by w, Convex bodies
Ky, - -+, K, are said to have similar width if there exist constants A,, -+, A, >0
such that Abx(u)= -+ = Abk, (u) for all u €Q; they are said to have
constant width jointly if the product bx,(u)- - - bk, (u) is constant for all u € Q.
For reference see Bonnesen and Fenchel [1] or Hadwiger [7].

Inspired by Chakerian’s inequality, we define the mixed width-integral

A(Kl,-.-,1<n)=%fn B (1) -+ b, (1)dS ().

By this definition, A is a map

A X" X - XH" - R.
e ———
n

It is positive, continuous, translation invariant, monotone under set inclusion,
and homogeneous of degree one in each variable.

Just as the cross-sectional measures W, (K) are defined to be the special mixed
volumes

V(K,...’K, U’...’ U)’
—_— ——
n—i i
the width-integrals B:(K) can be defined as the special mixed width-integrals

A, K,U,---,U).
— N——
n—i i
It was shown in [11] that the width-integrals have a great many properties in
common with the cross-sectional measures. Similarly, the mixed width-integrals
have many properties in common with the mixed volumes.

The following general inequality between mixed volumes is due to Aleksan-
drov [2, p. 50]:

m—1
[1 VK, - Ko Kaey  Ki) S V(K o, K) [I<m =n).
i=0

To establish a similar inequality between the mixed width-integrals, we require
the following simple extension of Holder’s inequality:

Lemma 1. Iffo, fi, - -+, fm are (strictly ) positive continuous functions defined on
Q and ay, - - -, a, are positive constants the sum of whose reciprocals is unity, then
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m e,
[ pwre- - fuwyas@ =TT || s asw)|
with equality if and only if there exist positive constants Ay, ---, A, such that
Mfi )=+ = A fom(u) for all u € Q).
Lemma 1 leads to a simple proof (see [10]) of

THEOREM 1.
m—1
Am (Kh " .a Kn)é H A(Kh v 'a Kn—my Kn—i, v ', Kn—i) [1 < m § n]
i=0

with equality if and only if K, i1, Ku_ms2, "+, K, are all of similar width.
The general form of Chakerian’s inequality that we shall prove is:
THeEOREM 2. V(K))-- - V(K.)=A"(K,, -+, K,) [Ki€e #"]
with equality if and only if the K are n-balls.

Proor. From Jensen’s inequality [8, p. 144] we have:

nwiUn b;:(u)---b;:(u)dS(u)ran B () - - b, () dS (1),

with equality if and only if the K, have constant width jointly. Hélder’s
inequality [8, p. 140] yields:
n -1 -n
], bewdsw] =[] be-b2wasw)
i=1 Q [¢}
with equality if and only if the K; have similar width. In [12] it was shown that
1

2
nw .,

vK)= [ s @]’

with equality if and only if K; is an n-dimensional ellipsoid. By combining these
inequalities we obtain the desired result.
A strengthened version of this inequality can be obtained by introducing the
“concept of mixed width-integrals of order p. For a real number p # 0 we define
the mixed width-integral of order p by

1

nw,

A,,(Kl,---,K,,)=wn[ fn b‘;’<1(u)~"b‘,’cn(u)dS(u)]”P.

For p equal to — %, 0, or = we define the mixed width-integral of order p by
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A(Ky, -+ K) = lim AJ(Ky, - -, Ko).
s—p

As a direct consequence of Jensen’s inequality we have:
PROPOSITION.
A (K, K)=A (K, -, K) [-e=p<qg=x, K €X"]
with equality if and only if the K; have constant width jointly.
Contained in the proof of Theorem 2 is a proof of the following:

LemMa 2. V(K)) - V(K.)= ALK, -, K,) [Ki€ X"]
with equality if and only if the K; are homothetic ellipsoids.

By combining Lemma 2 with the Proposition we obtain
THEOREM 3.
V(K) - V(K,) = AxK,, -+, K,) [-1<p=x K eX"]
with equality if and only if the K; are n-balls.

Clearly, Theorem 2 is the special case p = 1 of Theorem 3. It follows from the
Proposition that for all p such that — 1 < p <1 the inequalities of Theorem 3 are
stronger than the inequality of Theorem 2. Theorem 3 may also be considered a
generalization of Theorem 2 of [12].

If we consider the general inequality

V(K V(K= ALKy, K.,

then it follows that it holds for p if and only if — 1= p =. To see that the
inequality cannot hold for any p < —1 we merely set all the K; equal to some
fixed (non-spherical) ellipsoid.

Lemma 2 leads to an isoperimetric inequality similar to Busemann’s inequality
[3, p. 2] relating the volumes and cross-sections of convex bodies.

For a convex body K and a fixed direction u €, let ax(u) denote the
(integralgeometric) mean of the (n — 1)-dimensional volumes of the intersections
of K with the hyperplanes orthogonal to u that pass through the interior of K.
For the unit n-ball we have ay(u)= w./2 for all u € Q.

As a direct consequence of our definitions we have:

Lemma 3. 2ax (u)bx(u)= V(K) [ueQ, Ke¥").

If we combine Lemma 2 and Lemma 3 we obtain
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THEOREM 4.

n

25| ) e (w)dS ()2 VKYD - VRYT (K € X7

nws,ja

with equality if and only if the K; are homothetic ellipsoids.

We note that Theorem 4 may also be regarded as a generalization of an
isoperimetric inequality in [13].
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