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MIXED WIDTH-INTEGRALS OF 
CONVEX BODIES 

BY 

ERWIN LUTWAK 

ABSTRACT 

The mixed width-integrals are defined and shown to have properties similar to 
those of the mixed volumes of Minkowski. An inequality is established for the 
mixed width-integrals analogous to the Fenchel-Aleksandrov inequality for the 
mixed volumes. An isoperimetric inequality (involving the mixed width- 
integrals) is presented which generalizes an inequality recently obtained by 
Chakerian and Heil. Strengthened versions of this general inequality are 
obtained by introducing indexed mixed width-integrals. This leads to an 
isoperimetric inequality similar to Busemann's inequality involving concurrent 
cross-sections of convex bodies. 

In recent papers [4, 5] Chakerian proved that if K~,. �9 K, are rotations of a 

fixed convex body (compact convex set with non-empty interior) in Euclidean 

n-space and bK,(u) is half the width of K, in the direction u, then 

Ifo 1 1 bK,(u)"'br,(u)dS(u) v(r , ) . . .  V(K.)<= 

with equality if and only if the K, are n-balls. In the inequality above, V(K,) 
denotes the n-dimensional volume of Ki, l-I denotes the surface of the unit 

n-ball, and dS denotes the area element on 1~. For plane convex bodies, this 

inequality was proven by Heil [9], generalizing a result of Radziszewski [14] 

which was later rediscovered by Chernoff [6]. 

In this paper we show that the inequality established by Chakerian is a general 

inequality which holds for arbitrary convex bodies Kj (which need have no 

relation to one another). By considering power-means, we obtain strengthened 

versions of this general inequality. This, in turn, leads to an isoperimetric 

inequality similar to an inequality of Busemann [3] involving concurrent 

cross-sections of convex bodies. 

The setting for this paper is Euclidean n-dimensional space, R". We shall use 

Y/'" to denote the space of convex bodies, endowed with the Hausdorff topology. 
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The letter K (with subscripts) will be used to denote convex bodies, exclusively. 

The volume of the unit n-ball, U, will be denoted by w,. Convex bodies 

K1 , ' . . ,  K, are said to have similar width if there exist constants A , - . . ,  A, > 0  

such that A~bKl(U) . . . . .  ArbK,(u) for all u E l ) ;  they are said to have 

constant  width jointly if the product bK~(u).. �9 bK,(u) is constant for all u E f L  

For reference see Bonnesen and Fenchel [1] or Hadwiger [7]. 

Inspired by Chakerian's inequality, we define the mixed width-integral 

1Io A ( K , , ' " , K . ) =  n b K , ( u ) " ' b K . ( u ) d S ( u ) .  

By this definition, A is a map 

A :Y{" x . . . x Y { "  ---> R .  

n 

It is positive, continuous, translation invariant, monotone under set inclusion, 

and homogeneous of degree one in each variable. 

Just as the cross-sectional measures IV, (K) are defined to be the special mixed 

volumes 

V(K,..., K, U,..., U), 

n - i  i 

the width-integrals B~(K)  can be defined as the special mixed width-integrals 

A ( K , . . . , K , U , . . . ,  U).  

n - i  i 

It was shown in [11] that the width-integrals have a great many properties in 

common with the cross-sectional measures. Similarly, the mixed width-integrals 

have many properties in common with the mixed volumes. 

The following general inequality between mixed volumes is due to Aleksan- 

drov [2, p. 50]: 

m 1 

I-I V ( K , , . . . , K  . . . .  K._, , . . . ,K,_,)<- Vm(K, , . . . ,K , )  
i = O  

[ l<m_-<n] .  

To establish a similar inequality between the mixed width-integrals, we require 

the following simple extension of H61der's inequality: 

LEMMA 1. I f  fo, f , ,  " " ", f,, are (strictly) positive continuous funct ions defined on 

and ~1, " �9 ", am are positive constants the sum of  whose reciprocals is unity, then 
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fo [;o fo(u ).(7'(u) dS (u ) ] ''~' 

with equality if and only 
A~f~"(u) . . . . .  Z,~f~(u) ]:or all u E f~. 

Lemma 1 leads to a simple proof (see [10]) of 

THEOREM 1. 

m - - I  

Am(K1, . . . ,K.)<-_I-IA(K~, . . . ,K,_~,K._, , . . . ,K,_,  ) [ l < m _ - < n ]  
i = 0  

with equality if and only i[ K,-=+I, K . . . .  2,'" ", K, are all of similar width. 

The general form of Chakerian's inequality that we shall prove is: 

THEOREM 2. V(K1)"" V(K,)<=A"(K1, .. . ,K,) [K~ E~K ~] 
with equality if and only if the K~ are n-balls. 

PROOF. From Jensen's inequality [8, p. 144] we have: 

with equality if and only if the K~ have constant width jointly. H61der's 

inequality [8, p. 140] yields: 

[fo 11 [fo I-I b-KT(u) dS(u) <= b-K',(u)." b klo(u) dS(u) 
i = l  

with equality if and only if the K, have similar width. In [12] it was shown that 

v(~:,)_--- [~-~ f. b 7(u)dS(u)]' 
with equality if and only if K, is an n-dimensional ellipsoid. By combining these 
inequalities we obtain the desired result. 

A strengthened version of this inequality can be obtained by introducing the 

�9 concept of mixed width-integrals of order p. For a real number p # 0 we define 

the mixed width-integral of order p by 

ap(K1,"  ",K.)= ,o.[-~. fa . lip 

For p equal to - % O, or ~ we define the mixed width-integral of order p by 

if there exist positive constants A~,-.-, Am such that 
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A p ( K , , . . . ,  K,)  = lira A , ( K , , . . . ,  K,).  
s ~ p  

As a direct consequence of Jensen's inequality we have: 

PROPOSITION. 

Ap(K~,. . . ,K,)<=Aq(K1,. . . ,K,)  [-oo=<p <q__<oo, K, E ~/("] 

with equality if and only if the K~ have constant width jointly. 

Contained in the proof of Theorem 2 is a proof of the following: 

LEMMA 2. V(KO'"V(K,)<=A~-~(K~," ' ,K,)  [ K ~ E ~ ' ]  

with equality if and only if the K~ are homothetic ellipsoids. 

By combining Lemma 2 with the Proposition we obtain 

THEOREM 3. 

V ( K , ) - ' '  V(K, )<=A;(K, , " ' ,K , )  [ - l < p  =<o0, K, E ~ " ]  

with equality if and only if the K~ are n-balls. 

Clearly, Theorem 2 is the special case p = 1 of Theorem 3. It follows from the 

Proposition that for all p such that - 1 < p < 1 the inequalities of Theorem 3 are 

stronger than the inequality of Theorem 2. Theorem 3 may also be considered a 

generalization of Theorem 2 of [12]. 

If we consider the general inequality 

V(K1).. .  V(K,) <= A ~, (K,, �9 �9 K.),  

then it follows that it holds for p if and only if - l_-<p _-< oo. To see that the 

inequality cannot hold for any p < - 1 we merely set all the K~ equal to some 

fixed (non-spherical) ellipsoid. 

Lemma 2 leads to an isoperimetric inequality similar to Busemann's inequality 

[3, p. 2] relating the volumes and cross-sections of convex bodies. 

For a convex body K and a fixed direction u E f t ,  let aK(u) denote the 

(integralgeometric) mean of the (n - 1)-dimensional volumes of the intersections 

of K with the hyperplanes orthogonal to u that pass through the interior of K. 

For the unit n-ball we have au(u)= o~,/2 for all u E ~.  

As a direct consequence of our definitions we have: 

LEMMA 3. 2aK(u)bg(u) = V(K)  [ u E I I ,  K E ~ " ] .  

If we combine Lemma 2 and Lemma 3 we obtain 
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THEOREM 4. 

2n;  
mo~ a K , ( u ) " "  aK~(u)dS  (u)<= V ( K , )  ~n-')/n''" V ( K n )  ~-')'~ [K, E X ~] 

with equality if and only if the K, are homothetic ellipsoids. 

W e  n o t e  tha t  T h e o r e m  4 m a y  also b e  r e g a r d e d  as a g e n e r a l i z a t i o n  of an  

i s o p e r i m e t r i c  i n e q u a l i t y  in  [13]. 
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